Room-Temperature Quantum Ballistic Transport in Monolithic Ultrascaled Al–Ge–Al Nanowire Heterostructures
نویسندگان
چکیده
Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.
منابع مشابه
Gate-Tunable Electron Transport Phenomena in Al–Ge⟨111⟩–Al Nanowire Heterostructures
Electrostatically tunable negative differential resistance (NDR) is demonstrated in monolithic metal-semiconductor-metal (Al-Ge-Al) nanowire (NW) heterostructures integrated in back-gated field-effect transistors (FETs). Unambiguous signatures of NDR even at room temperature are attributed to intervalley electron transfer. At yet higher electric fields, impact ionization leads to an exponential...
متن کاملAbrupt Schottky Junctions in Al/Ge Nanowire Heterostructures
In this Letter we report on the exploration of axial metal/semiconductor (Al/Ge) nanowire heterostructures with abrupt interfaces. The formation process is enabled by a thermal induced exchange reaction between the vapor-liquid-solid grown Ge nanowire and Al contact pads due to the substantially different diffusion behavior of Ge in Al and vice versa. Temperature-dependent I-V measurements reve...
متن کاملOne-dimensional hole gas in germanium/silicon nanowire heterostructures.
Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportuniti...
متن کاملQuantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls
The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...
متن کاملPerformance analysis of a Ge/Si core/shell nanowire field-effect transistor.
We ana/lyze the performance of a recently reported Ge/Si core/shell nanowire transistor using a semiclassical, ballistic transport model and an sp3d5s* tight-binding treatment of the electronic structure. Comparison of the measured performance of the device with the effects of series resistance removed to the simulated result assuming ballistic transport shows that the experimental device opera...
متن کامل